Quinone Analogue Irrecoverably Paralyses

V. M. Sivan and R. Kaleysa Raj

the Filarial Parasites in Vitro

Department of Biochemistry, University of Kerala, Thiruvananthapuram 695 581, India

Received December 21, 1998

2,3-Dimethoxy-5-methyl-1,4-benzoquinone (Q₀), an analogue of ubiquinone, irreversibly paralyses the adult and microfilariae of the cattle filarial parasite Setaria digitata. The same concentration of Q₀ that paralyses the microfilariae of S. digitata also paralyses the microfilariae of the human filarial parasite Wuchereria bancrofti within the same duration. Thus the experiments done in the model S. digitata system can well be extended to the human filarial system. A drug at the level of the quinonecentered energy generating system, perhaps an analogue of quinone like Q₀, can inactivate the filarial parasites and may prove to be an effective drug to control filariasis. © 1999 Academic Press

Filariasis afflicts millions of people in the tropical and subtropical countries [1, 2]. The question of how to cure this disease still remains unanswered. 1-Diethylcarbamoyl-4-methylpiperazine (DEC) introduced in 1947 [3] is the drug still recommended widely for filariasis [4]. Suramin (antrypol), levamisole, and mebendazole, the DEC analogue centperazine and ivermectin are also suggested for filarial treatment [5–8]. But all of them show severe toxic side effects [6, 9-20]. So it is widely accepted that there is the need for an alternative drug for the treatment of filariasis. The present study is focused on the effect of quinone analogue on the model system, the cattle filarial parasite Setaria digitata and also on the microfilaria of both Setaria and the human filarial parasite Wuchereria bancrofti.

In parasitic helminths it is widely accepted that their specialized electron transport systems are anaerobic in nature even though they possess relatively lower activities of aerobic electron transport system comparable to those of obligate aerobes [21]. The electron transport system of *S. digitata*, the filarial parasite of cattle Bos indicus, recommended as a model system for human filarial parasites [10], is

branched and possesses rotenone sensitive and rotenone insensitive pathways for NADH oxidation and aerobic and anaerobic pathways for substrate utilization [22] and is characterized by, the presence of two quinones, Q₈ and Q₆, transhydrogenases and fumarate reductase, the absence of typical cytochromes and pyruvate dehydrogenase complex [23– 26] and the presence of a mitochondrial quinonelinked lactate utilizing system [27] insensitive to DEC (unpublished).

MATERIALS AND METHODS

S. digitata located in the peritonial cavity of the cattle was collected in Tyrode medium (NaCl 0.8%, KCl 0.02%, CaCl₂ 0.02%, MgCl₂ 0.01%, NaHCO₃ 0.015%, Na₂HPO₄ 0.05% and glucose 0.5%) from the local abattoir. The worms freed from extraneous materials were used. They were kept in Tyrode medium at 37°C in a water bath until use. The adult female worms were selected for experimental purposes. The selected worms were of same size and gave similar wriggling score in Tyrode medium. The peristaltic-type wriggling movement of the parasite of curvature from one side to the other of the median and back was scored as one and counts were made for one minute on each organism at the periods indicated. The substrate used were dissolved separately in known volume of Tyrode medium without glucose and its pH adjusted to 7. Then added to different beakers containing Tyrode medium without glucose (final volume 25 ml) and maintained at 37°C. Active female worms were introduced one each into different medii and every 30 minutes interval, number of wriggling was recorded. The quinone analogue, 2,3-dimethoxy-5methyl-1,4-benzoquinone (Q₀), was dissolved in known volume of Tyrode medium without glucose and was added to beakers containing Tyrode medium without glucose but with substrates and Tyrode medium with glucose. Final volume in each case was 25 ml. Active female worms were introduced one each into these Q₀ containing media of pH 7 maintained at 37°C. Experiments were repeated and simultaneously a control without Qo was kept for each test.

The S. digitata microfilariae were collected by centrifuging the Tyrode medium in which the female worms were incubated for 2 hrs at 37°C. W. bancrofti microfilariae were isolated from heparinised blood samples of filarial patients (collected during night time) by microfiltration. The isolated microfilariae were maintained in Tyrode medium at 37°C. The Q₀ solution prepared in Tyrode medium was added to the microfilaria containing Tyrode medium (final volume 1 ml, pH 7). A control without Q₀ was also maintained. The motility of

TABLE 1 In Vitro Effect of Q₀ on the Wriggling Movement of Setaria digitata in Different Systems

System	% Wriggling (at 30 th minute)	Paralysis
a. Tyrode medium without glucose		
$+ Q_0 (0.16 \text{ mM})$	0	(+)
b. a + Glucose	0	(+)
c. a + Malate + NAD + ADP + Pi	0	(+)
d. a + Fumarate	0	(+)
e. a + Sodium lactate	0	(+)
Controls (System minus Q_0)	100	(-)

Note. N = 6. Q_0 is 2,3-dimethoxy-5-methyl-1,4-benzoquinone. (+) Gradual and complete paralysis within 30 minutes. (-) No paralysis. 2.5 mM glucose, 0.75 mM NAD. 3 mM each of malate, fumarate, sodium lactate, and, 1 mM each of ADP and P₁ were used.

the microfilaria was observed under a microscope (100 \times). Different concentrations of Q₀ was tried and a concentration capable of paralysing the worms/microfilariae in a stipulated time was recorded.

RESULTS AND DISCUSSIONS

Q₀, paralyses the worms which were incubated in medium containing different substrates (Table 1). The paralysed worms were found intact and no external damage was noticed. This indicates that the effect of Q_0 may be at the respiratory chain level. The interception of electron transport activity and consequent depletion of energy may lead to the paralysis of worms. In vitro incubation of Escherichia coli with quinone analogues showed that by displacing endogenous quinones, these analogues intercept and divert

TABLE 2 Recovery Experiments with Q₀-Paralysed Worms

System	Observation (at 2 nd hr)	
a. PW in Tyrode without glucose	NR	
b. a + Glucose	NR	
c. a + Fumarate	NR	
d. a + Sodium lactate	NR	
e. a + Malate + NAD	NR	

Note. N = 6; NR, No recovery; PW, Q₀-paralysed worms. 2.5 mM glucose, 0.75 mM NAD, and 3 mM each of malate, fumarate, and sodium lactate were used.

electron flow from the energy producing regions of the respiratory chain which leads to cell death [28]. The electron transport in malarial parasite, where Q₈ is the part of the respiratory chain is disrupted by hydroxynaphthoquinolines [29]. 4-hydroxynaphthoquinolines inhibits the electron transport activity in Elmeria [30].

S. digitata incubated in Tyrode medium containing glucose was also completely paralysed in presence of Q₀ (Table 1). The inhibition by Q₀ is continuous and irreversible as is clear from the fact that the worms did not recover in Q₀-free medium, after paralysis from exposure to Q_0 (Table 2). The paralysed worms did not recover even when they were incubated in Tyrode medium containing malate plus NAD/sodium lactate/ fumarate (Table 2). Thus from this set of experiments it may be reasonable to conclude that Q_0 irrecoverably affects both aerobic and anaerobic energy generating activities (Figure 1).

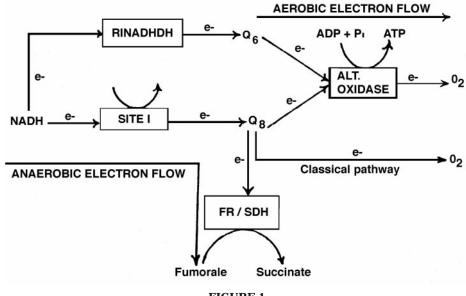


FIGURE 1

Microfilaria (mf)	${ m Q_0}$ concn. (mM)	Paralysis	Recovery
S. digitata mf W. bancrofti mf Controls	0.03 0.03 0.00	(+) (+) (-)	NR NR

Note. (+) Total paralysis within 10 minutes. (–) No paralysis. NR, No recovery. Q_0 is 2,3-dimethoxy-5-methyl-1,4-benzoquinone.

The movement of microfilariae of S. digitata is totally arrested within 10 minutes of incubation in Q_0 containing medium (Table 3). The same concentration of Q_0 totally paralyses the microfilariae of the human filarial parasite W. bancrofti within the same duration (Table 3). This reveals that the experiments done, with the model S. digitata can well be extended to the human filarial system in the direction of drug development. Based on the above observations it can be suggested that a drug at the level of the quinone-centered energy generating system, may be an analogue of quinone like Q_0 , can inactivate human filarial parasites and thereby effectively control filariasis.

ACKNOWLEDGMENTS

Thanks are due to the Department of Science and Technology for financial assistance in the form of major grants and the ICMR for the award of Emeritus Scientist's Position to R.K.R.

REFERENCES

- Sasa, M. (1976). Human filariasis, p. 334, Univ. Park Press, Baltimore, London.
- 2. WHO (1990). Biennial Report, 1986-1989.
- Hewitt, R. I., White, E., Wallace, W. S., Stewart, H. W., Kushner, S. and Subharrow, Y. (1947). *J. Lab. Clin. Med.* 32, 1304.
- 4. Goodwin, L. G. (1984). Trans. R. Soc. Trop. Med. Hyg. 7S, S1.
- 5. Subramanyam, D. (1987). Ciba-Found-Symp. 127, 246-264.
- 6. Prat, W. B. (1977). Chemotherapy of Infections, Part III. Oxford University Press, New York.
- 7. Awadzi, K., Schulz-Key, H., Howella, R. E., Haddock, D. R. W. and Gilles, H. M. (1982). *Annals Trop. Med. Parasitol.* **76**, 459.

- Saxena, R., Iyer, R. N., Anand, N., Chatterjee, R. K. and Sen, A. B. (1970). J. Pharmacol. 22, 306.
- 9. WHO (1992). Technical Report Series 821, 5th report of the WHO expert committee on Filariasis, p. 1-70.
- Hawking, F. (1978). 'Diethyl Carbamazine', Published by WHO., WHO/ONCHO/T8-142. p. 10–26.
- Duke, B. O. L., Thylefors, B. and Raugemont, A. (1981). WHO/ ONCHO 81, 156.
- 12. Mazzotti, L. (1959). Rev. Inst. Sulndr Eu. Fem. Trop. Mex. 19.
- 13. Subramanyam, D. (1984). The Association of Chemical Biochemists (India). *News Bull.* **3.** 1.
- Rallo, I. M. (1970). In: The Pharmacological basis of Therapeutics (eds.) Goodman, L. S. and Gilman, A., The Macmillan Co., London, p. 1067.
- Webster, L. T. Jr. (1985). Drugs used in the Chemotherapy of Helminthiasis. In: The Pharmacological basis of Therapeutics (eds.) Gillman, A. G., Goodman, L. S., Rall, T. W. and Murad, F., Macmillan Publishing Company, New York. p. 1009–1028.
- 16. Sharma, S. (1990). Prog. Drug. Res. 35, 365.
- 17. Partono, F. and Soewartha, P. A. (1979). Trans. Royal. Soc. Trop. Med. Hyg. 73–536.
- 18. Rougemont, A. (1980). Bull. WHO, 58, 917-922.
- 19. Mnson-Bahr, P. E. C. and Bell, D. R. (1987). *Manson's Trpical Diseases* (19th Ed). ELBS, London, p. 353, 406.
- Aziz, M. A., Dialto, Diop, I. M., Larivicre, M. and Porta, M. (1982). *Lancet*, ii, 171.
- 21. Bryant, C. and Behm, C. (1989). *Biochemical Adaptations in Parasites*, p. 25–254.
- Sivan, V. M. and Kaleysa Raj, R. (1992). Biochem. Biophys. Res. Commun. 186, 698-705.
- Santhamma, K. R. and Kaleysa Raj, R. (1990). Biochem. Biophys. Res. Commun. 167, 568-574.
- Kaleysa Raj, R., Puranam, R. S., Kurup, C. K. R. and Rama sarma, T. (1988). *Biochem. J.* 256, 559–564.
- Unnikrishnan, L. S. and Kaleysa Raj, R. (1992). *Biochem. Bio*phys. Res. Commun. 184, 448–453.
- Rafi, M. M. and Kaleysa Raj, R. (1991). J. Bio. Sci. 16-3, 121– 126
- Sivan, V. M. and Kaleysa Raj, R. (1994). *Biochem. Biophys. Res. Commun.* 204, 1, 1–17.
- Implay, J. and Fridovich, I. (1992). Arch. Biochem. Biophys. 296, 337–346.
- Hudson, A. J., Randall, A. W., Fry, M., Ginger, C. D., Hill, B., Latter, V. S., McHardy, W. and Williams, R. B. (1989). *J. Med. Chem.* 27, 1–9.
- 30. Wang, C. L. (1984). J. Med. Chem. 27, 1-9.